PROJECT MANAGEMENT

Topic 1 Introduction

Contents

Definitions

Examples of projects

- Split the atom
- Channel between England and France
- Introduce Apple's Watch
- Introduce Google glass

"Projects, rather than repetitive tasks, are now the basis for most value-added in business"

-Tom Peters

Definitions

Project Life Cycles

Definitions

Project Life cycles

Conceptualization - the development of the initial goal and technical specifications.

Planning – all detailed specifications, schedules, schematics, and plans are developed

Execution – the actual "work" of the project is performed

Termination – project is transferred to the customer, resources reassigned, project is closed out.

Figure 1.2. The project management process

Work Breakdown Structure (WBS)

- WBS breaks down project into major components (modules).
- *Modules* are further broken down into *activities* and, finally, into individual *tasks*.
- Identifies activities, tasks, resource requirements and relationships between modules and activities.
- Helps avoid duplication of effort.
- Basis for project development, management, schedule, resources and modifications.
- Approaches for WBS development:
 - 1. Top down process 2. Brainstorm entire project

Figure 1.3. *WBS for a house – building project*

WBS in MS Project

121	Micro	rosoft Project - Project2	
	Eile	e <u>E</u> dit <u>V</u> iew Insert F <u>o</u> rmat <u>T</u> ools <u>P</u> roject <u>W</u> indow <u>H</u> elp	
	B	F 🖬 🚭 🖪 🖤 🐰 🖻 🛍 🍼 ኯ 🍓 👁 👾 🗰 🖺	🖹 🍥 🕼 🛛 No Group 💿 🔹 🔍 🗢 🕲 🖓 🗸
🌩	\$	→ + - Show - Arial - 8 - B I U	🗉 🗐 🛛 All Tasks 🔹 🔻 😴 🗸
		Task Name	Nov 13, '05 Nov 20, '05 Nov 27, '05
	1	I. IT Installation Project	
	2	□ 1.1 Match IT to org. tasks	
	3	1.1.1 Conduct problem analysis	
	4	1.1.2 Identify info on IT technology	
	5	1.2 Identify It user needs	
	6	1.2.1 Interview potential users	
	7	1.2.2 Develop presentation of IT benefits	5
	8	1.2.3 Gain user "buy in" to system	
	9	1.3 Prepare Information Proposal	
	10	1.3.1 Develop cost/benefit information	
	11	1.3.2 Gain top management support	

Responsibility Assignment Matrix

- Project manager assigns work elements to organizational units, departments, groups, individuals or subcontractors.
- Uses an organizational breakdown structure (OBS).
- OBS is a table or a chart showing which organizational units are responsible for work items.
- OBS leads to the responsibility assignment matrix (RAM)
- RAM shows who is responsible for doing the necessary work in the project.

Responsibility Assignment Matrix

- Tasks are described in tables or charts
- Project mangement assigns tasks to groups, inviduals hay or subcontractors. This matrix is called responsibility assignment matrix: RAM

In charge	3.1 Select paint	3.2 Select carpet	3.3 Finish work
Husband	2(*)	2	2
Wife	1	1	1
Materials	3	3	3
Contractor	2	2	2

(*)Response level: 1: Overral, 2: Perform, 3: Support, supply

Table 1.1. RAM for Decoration task

Gantt Charts

- ✓ Establish a time-phased network
- $\checkmark \quad \text{Can be used as a tracking tool}$

Benefits of Gantt charts

- 1. Easy to create and comprehend
- 2. Identify the schedule **baseline** network
- 3. Allow for **updating** and **control**
- 4. Identify resource needs

Create a Gantt chart based on the activities listed in the table.

Activity	Time	Pred	Activity	Time	Pred
Z	8		U	3	W
Y	5	Z	Т	6	V
Х	8	Z	S	7	U,T
W	4	Y,X	R	9	S
V	5	W			

Gantt Chart

Table 1.2. A Gantt chart

Project Control

- Process of ensuring progress toward successful completion.
- Monitoring project to minimize deviations from project plan and schedule.
- Corrective actions necessary if deviations occur.
- Key elements of project control
 - Time management
 - Cost management
 - Performance management
 - Earned value analysis.

House Building Project Data

No. Activity		<u>Activity Predecessor</u>	<u>Duration (Months)</u>
1.	Design house and obtain financing	_	3
2.	Lay foundation	1	2
3.	Order Materials	1	1
4.	Build house	2, 3	3
5.	Select paint	2, 3	1
6.	Select carpet	5	1
7.	Finish work	4, 6	1

Activity-on-Arc (AOA) Network

- A branch reflects an *activity* of a project.
- A node represents the beginning and end of activities, referred to as *events*.
- Branches in the network indicate *precedence relationships*.
- When an activity is completed at a node, it has been *realized*.

The Project Network (Concurrent Activities)

- Network aids in planning and scheduling.
- Time duration of activities shown on branches.
- Activities can occur at the same time (concurrently).
- A *dummy activity* shows a *precedence relationship* but reflects no passage of time.
- Two or more activities cannot share the same start and end nodes.

AOA Network for House Building Project

Figure 1.6. *Expanded Network for Building a House Showing Concurrent Activities*

Activity-on-Node (AON) Network

- A node represents an activity, with its label and time shown on the node
- The branches show the precedence relationships
- Convention used in Microsoft Project software.

Paths Through a Network

- B $1 \rightarrow 2 \rightarrow 5 \rightarrow 6 \rightarrow 7$
- C $1 \rightarrow 3 \rightarrow 4 \rightarrow 7$
- D $1 \rightarrow 3 \rightarrow 5 \rightarrow 6 \rightarrow 7$

Critical Path = All tasks with slack = zero

The *critical path* is the longest path through the network; the minimum time the network can be completed. From Figure 8.8:

Path A: $1 \rightarrow 2 \rightarrow 4 \rightarrow 7$ 3 + 2 + 3 + 1 = 9 monthsPath B: $1 \rightarrow 2 \rightarrow 5 \rightarrow 6 \rightarrow 7$ 3 + 2 + 1 + 1 + 1 = 8 monthsPath C: $1 \rightarrow 3 \rightarrow 4 \rightarrow 7$ 3 + 1 + 3 + 1 = 8 monthsPath D: $1 \rightarrow 3 \rightarrow 5 \rightarrow 6 \rightarrow 7$ 3 + 1 + 1 + 1 = 7 months

The Project Network (Earliest Times)

ES is the earliest time an activity can start: ES = Maximum (EF)
EF is the earliest start time plus the activity time: EF = ES + t

Figure 1.9. Earliest activity start and finish times

The Project Network (Latest Times)

- LS is the latest time an activity can start without delaying critical path time: LS = LF - t
- LF is the latest finish time. LF = Minimum (LS)

Figure 1.10. Latest activity start and finish times

The Project Network (Activity Slack Time)

- Slack is the amount of time an activity can be delayed without delaying the project: S = LS ES = LF EF
- Slack Time exists for those activities not on the critical path for which the earliest and latest start times are not equal.

Shared Slack is slack available for a sequence of activities.

Activity	LS	ES	LF	EF	Slack, S
*1	0	0	3	3	0
*2	3	3	5	5	0
3	4	3	5	4	1
*4	5	5	8	8	0
5	6	5	7	6	1
6	7	6	8	7	1
*7	8	8	9	9	0

Table 1.3

*Critical path

The Project Network (Activity Slack Time)

Critical path: - The longest path through the network; s = 0 - Min time.

Figure 1.11. Activity slack

Home work

Find Critical path?